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Efficient Eigenmode Analysis for Planar’
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Abstract —A unified analysis for planar transmission fines is performed

rising the mode-matching technique. Exploiting the fact that the thickness

of the metaf coating (fins or strips) is nsrmfly very smafl in comparison to

all other dimensions, the characteristic equations are formulated in a way

which preserves the physicat meaning of their individual terms. Thus,

simplifications of far-reaching consequences can be introduced for afl

eigenmodes showing a cutoff frequency. It is shown in particular that the

higher order modes can be derived approximately from the fundamental

mode. Moreover, the dispersion relation of fin-lines can be given by a

simple expression because the equivalent dielectric constant linearly de-

pends on frequency. Both steps reduce the computer time by about two

orders of magnitude in comparison to the spectrat-domain method.

I. INTRODUCTION

N UMEROUS PAPERS have appeared dealing with a

rigorous solution of the dispersion problem of vyious

planar transmission lines. Highly sophisticated techniques

have been developed and applied, one of the most favor-

able being the spectral-domain method in conjunction with

Ritz-Galerkin’s method. Two references may stand for

many investigations: [1], [2]. Common to all of these works

is a time-consuming evaluation of the final relations. Hence,

there are but few papers dealing with an application of the
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eigenmode analysis to circuit problems. This contribution

deals with an approximate and efficient analysis of planar

transmission lines and its application to fin-lines. Using the

mode-matching technique, the final equations are for-

mulated in a way which allows introducing some essential

simplifications. The main difference to existing methods is

a reduction in computer time of about two orders of

magnitude. Hence, the analysis should be well suited for a

computer-aided design of microwave planar circuits.

II. ANALYSIS

The structure w&ch has been analyzed consists of an

arbitrary number of metallic strips which are deposited on

either side of a dielectric substrate. This planar circuit may

be mounted either in the H-plane or in the E-plane of a

rectangular box. Hence, the structure can be specialized to

represent a microstrip line, coupled striplines, a slot line, a

coplanar line, a microstrip line with tuning septums, a

bilateral, unilateral, or antipodal fin-line, and a mttltislot

fin-line. For explaining the calculation procedure, the cross

section of the latter is shown” in Fig. 1. The metallic strips

are assumed to have finite thickness. This eliminates, on

one hand, the existence of field singularities due to an edge

condition while it is furthermore realistic at frequencies in
the upper millimeter-wave range [3].

The eigenmode analysis starts with the well-known
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Fig. 1. Cross section of a general planar transmission line

mode-matching method, which shows some important ad-

vantages over other methods: its final equations can be

interpreted physically. This allows simplifications of great

consequences as will be shown below. Moreover, the method

can also directly be applied at the cutoff frequency. An

inherent disadvantage is, however, the poor convergence of

the solutions. It was the main task of our investigations to

remove this restriction.
The cross section of the shielded planar structure of Fig.

1 is divided into 7 regions with 8 boundaries separating

these regions from one another. Due to the dielectric

substrate, the field is hybrid and can be calculated from 2

scalar potential functions. In region 1 one has, e.g.,

w

W= Z ~p”cos(~x,x)”cos(~yp~).exp(- J~=Z)
*=(-3

+?= ~ ~~”sin(k.px)”sin(~,p~).exp(- J~.z).
*=1

(1)

In the following we will still need the potentials in region 7.

They are of course similar to (1) but with amplitudes AP,

A; replaced by GP, ~P. The wavenumbers in the x- and

y-directions are related via

–k; +k2=k;m~=k;P+k2
YP

Furthermore, kyP = ptr/b, and k means free-space wave-
numbers. The second of the separation relations is valid in

region 4.

The total field is calculated by a superposition of a

TE-term ( +~) with a TM-term ( $~). One obtains, e.g., in

region 1

[

—

E,, = ~ I~ +#. (l–~P) .sin(kXpx) .cos(kYP.v)
P=() Yp P

where

with CP= 1 for p = O, and CP= O otherwise. The next step is

to match the tangential field components at the various

interfaces. Thus, the y-dependence is eliminated due to

orthogonality. We will now utilize that the metallization is

usually very thin in comparison to all other dimensions.

For At/a <<1 we can set sin(kYAc) = kXAc and cos(kXAc)

=1. It is then possible to eliminate the amplitudes of the

fields in the slot regions and in the dielectric region which

can be explicitly related to the amplitudes of the fields in

regions 1 and 7. This is valid for any number of slots or for

any number of strips on a dielectric substrate. (The struc-

ture of Fig. 1 may also be interpreted as a general strip-line

configuration being mounted in the H-plane of the rectan-

gular waveguide.) Thus, one finally arrives at the homoge-

neous system of equations
m m

f(l) = ~ Xy).q(z,p), g(r)= x x&)”F2(t,p),
*=() *=()

~=(),l.. . m, HE-modes

f(t)= g x; ’). F,(t, p), g(t)= 5 xy).F2(t, p),
~=1 p=l

t=l,2 . . . co, EH-modes (4)

where X~l), X$), ~~1), ~~), f(t), g(t), ~(t), and g(t) are

linear combinations of the amplitudes in regions 1 and 7.

Furthermore, they depend on kxp, kpP, k, and dimensions.

They are listed in Appendix I. The abbreviations F1, F2, ~1,

and ~2 depend only on dimensions and not on frequency.

They are given by

F,(t, p)=~,:of; (t>s).f; (P~); =~ ~ ‘s’,
~ ~ S=(I J

.i
J,

where i denotes the slot number on the left of the substrate

and j denotes it on the right. f, depends on two integers as

[

. (-l)p2.sin(p,n( bZ+dl)/b)-sin(plT. bl/b)

1- (P;/’P:)(b2/d:) 1

forpldl+pzb

=$cos(pj7r” b,/d,), f((),0)=~.

forpld, = p2b. (6)

Equation (4) can be explained physically.

1) The first two relations describe the transverse reso-

nance condition of a hybrid HE-mode, the latter two

belong to an EH-mode. Setting C,= 1 yields E~~) = E&=

~f~) = ~j~s O (see Appendix I). Then (4) describes purely

H-modes (TE-modes) and E-modes (TM-modes), respec-

tively.

2) Matrices lj(t, p), Fz(t, p), ~l(t, p), and ~2(t, p) are

purely diagonal if the metallization is removed. Hence,
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Fig. 2. Guide wavelength versus frequency of a microstrip with tuning
septum of width d~. a = 24.13 mm, b = 12.7 mm, 11= 12= 11.43 mm,
d, = d~ = 5.715 mm, c = 1.27 mm, c,= 8.875. i means free-space wave-
length; O means results tafcen from [5]. Parameter is the number of
terms in the series expansions.

there is no mutual coupling between the expansion terms

of the individual regions, which can be treated separately.

The transverse resonance condition of the HE~O-modes is

then obtained from the first two equations of (4) setting

t = O, that of the EH~l-modes from the second couple for

t= 1, etc. The HE- and EH-modes change into the H- and

E-modes of rectangular waveguides for c,= 1.

3) The structure of the matrices (5) suggests how the

general case of more than two slots on either side of the

substrate is to be treated. Then the maximum summation

indices for i and j have only to be raised.

The third item constitutes an essential difference to the

spectral-domain method. In this method the electromag-

netic field is expressed in terms of the unknown slot field

components. Hence, raising the number of slots increases

the number of unknowns. In our method, the complexity

of the evaluation procedure is, however, not affected by the

number of slots.

Numerically investigating the convergence of the series

in (5) has shown that F,, = ~ (t,s)f(p,s )b/di monotoni-

cally increases up to a maximum value which is achieved at

J being the nearest integer to a certain Sn. The latter has

been found from (5) by differentiation. It reads

Sm= [(p’ + #)/2] ’/2di/b. (7)

For s >.s~, F., strongly decreases and can be neglected

whens exceeds Sn + As. As depends on the ratio of the slot

width to the waveguide height. This is analogous to the

phenomenon of relative convergence discussed in [4]. For

example, As = 0.5 for d, /b = 0.3. The magnitude of As

must be found numerically for every d, /b.

The propagation constant is found by equating the de-

terminant of the homogeneous system (4) to zero. As an

example, numerical results for a microstrip with tuning

septum are compared with published values taken from [5]

(see Fig. 2). nl denotes the upper summation index in the

series expansion of the potential functions (1). The agree-

ment is excellent for larger widths of the septum, and it is
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Fig. 3. Guide wavelength of a shielded microstrip versus frequency

(sofid lines). a = b = 12.7 mm, c = 1.27 mm, d, = dz = 5.715 mm. Dashed
lines denote results taken from [6].

somewhat poorer for small widths, which is, however, due

to the truncation of the series used in [5].

The shielded microstrip treated in [6] is taken as a

second example. In this case, our solution converges very

fast and coincides with the results of [6] (see Fig. 3).

Comparisons to published results for fin-lines with one or

two slots also showed a good agreement. They will not be

given here because we will still compare our approximate

relations derived below to the literature.

111. APPROXIMATE RELATIONS AT CUTOFF.

Up to now, the computer time is very large. Moreover,

one must be very careful in order not to overlook one or

the other zero of the determinant. Both restrictions can be

removed for all eigenmodes showing a cutoff frequency.

Hence, the following analysis does not cover the funda-

mental mode of a microstrip line or the even mode of a

double-slot fin-line. It is, however, valid for nearly all

higher order modes of the general planar transmission line

which do show a cutoff frequency. In particular, it is valid

for all modes of the bilateral, unilateral, and antipodal

fin-line. The first step is to replace the analysis by a

calculation at the cutoff frequency of every mode. Then

the HE-modes are reduced to pure TE-modes and the

EH-modes to pure TM-modes. Equations (4) are then

decoupled and can be solved separately. Equating their

determinants to zero yields the cutoff frequencies: The

propagation constants can be calculated from the cutoff

frequencies by utilizing the concept of an equivalent dielec-

tric constant ke, which has been introduced in [7]. Our

calculations have proven that the equivalent dielectric con-

stant is nearly constant versus frequency as has been

claimed [7] provided that the relative dielectric constant e,

of the substrate material is only small.

The substrate material, which is often used, is RT-duroid

with c, = 2.22. In this case, k, may be assumed to be

constant. It can then be calculated from its definition as

the squared ratio of the cutoff wavenumber for c, = 1 to

that obtained for the actual 6,.
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Fig. 4. Equivalent dielectric constant versus frequency (sohd lines). (a)

Bilateral, (b) unilateral fro-line. a = 7.12 mm, b = a/2, c = 0.125 mm,
Ac = 0.0175 mm, 6,= 2.22. Dashed lines denote k, at cutoff.

The concept of an equivalent dielectric constant is

justified by this feature alone. Moreover, the numerical

calculations show that this quantity is of large practical

importance even for arbitrary permittivities, because it

depends on frequency linearly. This is illustrated in Fig.

4(a) and (b), which show the equivalent dielectric constant

of a unilateral and a bilateral fin-line with one slot. The

solid lines have been computed from the dispersion rela-

tion

k:=kek’-k:(cr=l) (8)

by inserting numerically found values for k,. Itis obvious

that k. can be approximated at frequency .f by

ke(f)=ke(fc) +g(~; –k:(fc))(~ -kc). (9)

g is a constant which can be determined either experimen-

tally or from the exact numerical solution at an arbitrary

frequency.

The linear frequency dependence of the equivalent di-

electric constant has recently been proven experimentally

[8] and modeled empirically [8]. In order to illustrate the

validity of (9), we have compared exact and approximate

propagation constants in Table I. The agreement is good

even at the upper band edge. The same statements are also
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Fig. 5 Equivalent dielectric constant of the HE30-mode versus frequency

(sotid lines). Parameters as in Fig. 4; dashed lines denote ke at cutoff.

TABLE I
CO~ARISON BETWEEN EXACT AND APPROXIMATE PROPAGATION

CONSTANTS OF FIN-LINES WITH ONE AND Two SLOTS

I b]lateral fln-llne unilateral fln-17ne I

dzjb

0,0

02

{

flGHz 25

k 0.520z appr

k
z ex

k
2 appr

kz ex

O 522

0.429

0.430 F
40

0 884

0 890

0,828

0,s31 1a25 40

0.519 0.890

0.523 0,896

0.411 0.819

0.413 0,823

WR-28 wavegulde, c.= 2,~2, all/b= 0.1 = bl/b, b2/b= 0.6. [I = [Z =

3.4155 mm, c = 0.254 mm, Ac = 0.0175 mm.

valid for antipodal fin-lines. Furthermore, the straight-line

approximation to k,(f) may also be applied to higher

order modes. This is illustrated in Fig. 5 for the HE30-mode.
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Although the quality of the approximation is poorer now,

the influence on calculations should be small because these

modes are normally below cutoff. Hence, the weight of the

kc-term in the dispersion relation is small.

Summarizing the results of this section we can state the

following. The eigenmode analysis may be performed at

cutoff and the dispersion relation thereafter approximated

by using the concept of an equivalent dielectric constant.

The computer time can thus be reduced by a factor of

1: N, ivith N being the number of interesting frequencies.

If the accuracy should be insufficient in a particular case,

one can utilize the approximate propagation constants as

initial values when looking for zeros in the coefficient

determinant of (4).

TABLE II

COMPARISON BETWEEN EXACT AND APPROXIMATE CUTOFF WAVE

NUMBERS OF A BILATERAL FIN-LINE

H
m,n kc(e.act ) kc(dpprox )

1,0 0.252

1,1 0.879

3,0 0.998 1.002 HE-modes

5,1 2.o41 2.o39

1,3 2.658 2,646

IV. RELATIONS BETWEEN FUNDAMENTAL AND d,= 0.56 mm, b,= 1.5 mm, other parameters as in Table I.

HIGHER ORDER MODES

Up to now, the cutoff frequency of every wanted higher

order eigenmode must still be calculated. This can be

avoided by a second approximation which establishes a

relation between all higher order modes and the fundamen-

tal mode for those transmission lines whose fundamental

mode shows a cutoff frequency. Combining (4) with

(A2)-(A3) at cutoff yields ,

f(t)= ~ Xp+,(t,p), j(t)= ~ I--w,(t,p).
P=() ~=1

(10)
Furthermore

x(l) = Ap(H&) + Hp”@;)
P

(11)

Abbreviations H and ~ have been defined in Appendix II.

Defining

(l+ct).Ac
& =

p:o~”w9P)

Ac
g,= — (12)

,’5f”w*P)

(10) can be rewritten

X(i) = g, f(t) ’/[(l + c,)Ac], ~j*) = ~,f(t)2/Ac.t

(13)

These relations can be interpreted physically. For a single-

slot fin-line with dl = b one finds from_ (5) and (6)

~l(plj P2)=lforp1 =p2=f>1j F1(p9t) =~l(p, t)= Ofor
p *t, and F1(O,O) = 2. Hence, g,= g, = Ac for arbitrary t.

The fin-line is now reduced to a waveguide with dielectric

slab loading. Its eigenvalues are found from the zeros of

the coefficient determinants in (13): These relations are the

characteristic equations for the case of a fin-line d, < b,

too. The problem then is to determine both gt and gt. Their

physical meaning can be derived from (12). (Note that this

is an inherent advantage of the mode-matching method!)

NOW gt, g~– # Ac because of the effect of the metal fins. As

is also known from ridged waveguides, the fins lower the

cutoff frequencies of the HE-modes but enhance those of

the EH-modes. Hence, g, must represent a capacitive and g,

an inductive effect.

In summary, g, and g, model the effect of the fringing

fields near the fin-line slots. It has been found from the

exact calculations that both quantities are nearly indepen-

dent of the order m of the modes. (This is also supported

by ridged waveguide calculations [9].) Moreover, one may

assume that gt and & do not depend on indices t or n,

respectively, because the perturbation due to the fins ap-

pears in the x-direction. This latter assumption can, how-

ever, only be expected to be valid for either n, teven or n, t

odd. The validity of these approximations has been thor-

oughly checked numerically. Quantitative results will be

presented below.

Hence, gO=gz=gg=. -., gl=gg =g~=-..,~l=~~==

~5 =”””! andgz=gd=ge=... is valid. It is then possible

to calculate the eigenvalues of the higher order modes from

the eigenvalue of the lowest order mode. This will at first

be shown for the bilateral fin-line. Let us assume m odd.

The characteristic equation can then be derived from ( 11),

(13), (A2), and (A3) to read

. b tan(~Xp. c/2) = B. (14)cot(kXPZ) = kxpgg + ‘r ~
Y.-r

Here thas been changed in p. Furthermore, q = O for p, n

even and q = 1 for p, n odd, (14) is used to determine gO

and gl, respectively, by inserting exactly calculated eigen-

values for the HE ,0- and HE,, -mode, respectively. It can

afterwards be solved for the higher eigenvalues by setting

(kXpl)= (m~~ + Aq) where m~ = (m – 1)/2. Then one

arrives at cot ( A ~) = B. This relation can iteratively be

solved together with (14). The whole procedure will be

explained in detail, elsewhere [10]. It can also be applied to

the EH-modes and to unilateral fin-line. Its validity is

illustrated by a comparison to exact values, which is given

in Table H. Finally, the propagation constants of various

modes (H-t ype and E-type) calculated either exactly or
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TABLE III

COMPARISON BETWEEN EXACT AND APPROXHViATE PROPAGATION
CONSTANTS OF A BILATERAL FIN-LINE AT 30 GHz

rorder
type mn

H 10

H 12

H 50

E 12

E 32

H 52

H 70

E 52

H 72

kz(exact)

I/nIll

0.636

J1.673

J1.772

J1.881

J2.479

J2.550

j2.756

J3.215

j3.279

kz(appr.l)

I/m

0.636

J1.673

jl.772

J1.884

J2.468

j2.549

J2.753

J3.206

J3.277

kz(appr.2)

llm

0.636

J1.672

31.790

J1.884

J2.457

J2.514

J2.728

J3.191

J3.249

Parafneters as in Table II. appr. 1 means with approximate dispersion
relation only, appr. 2 means with approximate calculation of the higher-
order modes additionally.

approximately are shown in Table III. Two approxima-

tions have been used: either a constant ke or a constant k.

together with the approximation to the higher order modes

just discussed. The accuracy obtained should be sufficient

for most applications.

Using the approximations to the higher order modes, the

computer time is reduced by a ratio 2: M with M the

number of wanted eigenmodes. The total reduction in

computer time is hence 2: NM, which is equivalent to a

reduction by about two orders of magnitude.

V. SIMPLIFICATIONS FOR OPEN STRUCTURES

It has been shown above that F~, in (5) can be neglected

for s > .r~. For narrow slots with d, <<b, it is then suffi-

cient to take only the first term for s = O or for s = 1,

respectively, into account. Then

F1,2(t, p)= F;,z(t).F{,z(p). (15)

Similar relations are valid for Fz(t, p), ~l(t, p), and

~z( t,p).In the following, we will only describe the analy-

sis for the first of relations (4). Taking the equation for

subscript t= q, one can eliminate X~l) by calculating the

difference
‘x

f(t) -f’(q)= ~ X;’).f’{(t,p) (16)
P=(J
P*q

with

(17)

and

F;(t, p)= F1(t, p)–
F1(t, q). F1(q, p) . ~18)

F,(q, q)

The right-hand side of (18) cancels because of (15). Hence,

inserting (Al) into (16) yields

A, kXq. sin(kXJl). (I+~q) . Fl(t, q)

~=
(19)

kX.. sin(kX,ll). (l+c,) Fl(q, q) “

The expansion coefficients A, have thus been related to A~,

which is the only unknown in (19). They are now inserted

(a)

1fef f

1.5

13 I

071 I I 1: I I
o 10 20 30 40 50 60 GHz

f—

(b)

Fig. 6. (a) Cross section and (b) effective dielectric constant versus
frequency of an open slot-line (sofid lines). [/c= 5, Ac = 0,0175 mm,
t = 2.22. 0 mean measurements; the dashed curves have been taken

f;om [ 12].

TABLE IV

COMPARISON BETWEEN THIS THEORY AND [11] FOR ,Cff = (k~\k2)

OF A UNILATERAL FIN-LINE AT 33 GHz

dl
1

0.2 0.8 1.6 mm b1+d[2

1.129 1.152 1.165 this theory
0.1

1.13 1.15 1.17 Ref. 11

1.o61 1.066 1.074 th~s theory
0.25

1.o6 1.o6 1,07 Ref. 11
mm

Slot width dl, height b, + d/2, c = 0.125 mm, other parameters as m
Table I.

into equation number ‘ q‘ of the system (4), which is the

characteristic equation for the HE-modes or EH-modes,

respectively.

This technique is well suited for open structures. It can,

however, also be used for a relatively small slot width. This

is confirmed by a comparison between our approximate

values for the propagation constant of the fundamental

mode of a unilateral fin-line and values derived in [11] by

using the spectral-domain method. The results given in

Table IV show a good agreement. (In fact, the effective

dielectric contant has been shown which is defined as the

squared ratio between the propagation constant and the

wavenumber.)

Finally, the effective dielectric constant of an open slot

line (Fig. 6(a)) computed in this way is compared to results

reported in [12] and to measurements in Fig. 6(b). The

agreement is again good.

VI. CONCLUSIONS

A unified analysis of general planar transmission lines

has been presented by using the mode-matching technique.

The number of unknowns does not depend on the number
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of slots or strips on the dielectric substrate if use is made of and HP = 1, ~P = – 1 for the even modes of the bilateral
the metallization thickness being very small in almost all fin-line. For the unilateral fin-line, one has

practical configurations. For all eigenmodes exhibiting a _ @j) _ H{:)
cutoff frequency, two assumptions are shown to be valid.

The dispersion relations can easily be formulated by using “ = @~)- (g(p)/@ = ~~)

the concept of an equivalent dielectric constant. All higher

order modes can be derived from the fundamental mode.
_ ~f;) _ ~f;)

In addition, further simplifications to the characteristic
(A5)

~=E;)-(~(P)/R) = g;j

equation are possible for small slot width and for open

structures. By all of these means, the computer time is because At/a <<1 and for the antipodal fin-line Hp =

reduced by two orders of magnitude. (– 1)~+1, E* = (– 1)~.

REFERENCES

T. Itoh, “Generalized spectraf-domain method for multiconductor
printed lines and its application to tunable suspended rnicrostrips,”
IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp. 983-987,

Dec. 1978.

L. Schmidt and T. Itoh, “Spectral-domain analysis of dominant and
higher order modes in fin-lines,” IEEE Trans. Microwaoe Theory

Tech., vol. MTT-28, pp. 98 1–985, Sept. 1980.

A. Beyer and I. Wolff, “A solution of the earthed fin-line with finite
metallization thickness,” in IEEE MTT Symp. Dig., 1980, pp.

255-257.

R, Mittra, T. Itoh, and T. S. Li, “Analytical and numerical studies

of the relative convergence phenomenon arising in the solution of

an integral equation by the moment method,” IEEE Trans. Micro-
waoe Theory Tech., vol. MTT-20, pp. 96– 104, Feb. 1972.

T. Itoh, “ Spect~al-domain immittance approach for dispersion char-
acteristics of shielded microstrips with tuning septums,” in Proc. 9th
Euro. Microwaoe Conf., (Brighton), 1979, pp. 435-439.

T. Itoh and R. Mittra, “A technique for computing dispersion

characteristics of shielded microstrip lines,” IEEE Trans. Micro-
waoe Theoiy Tech., vol. MTT-22, pp. 896–898, Oct. 1974.
P. J. Meier, “Integrated fin-line millimeter components,” IEEE
Trans. Microwaoe Theory Tech., vol. MTT-22, 1974, pp. 1209-1216,
1974.

A. K. Sharma and W. J. R. Hoefer, “Empirical analytical expres-
sions for fin-line design,” in IEEE MTT Synrp. Dig., 1981, pp.

102-104.

S. Hopfer, “The design of ridged waveguide,” IRE Trans. Micro-

waoe Theoty Tech., vol. MTT-3, pp. 20–29, Oct. 1955.
A. M. K, Saad and K. Schiinemann, “Closed-form approximations
for fin-line eigenmodes,” accepted for publication in Proc. Inst.

Elec. Eng., part H(MOA), 1982.
L. P. Schmidt, T. Itoh, and H. Hofmann, “Characteristics of

unilateral fin-fine structure with arbitrarily located slots,” in IEEE

MTT Symp. Dig., 1980, pp. 255-257.
A. M. A. E1-Sherbiny, “Exact analysis of shielded microstrip lines

and bilateral fin-lines,” IEEE Trans. Microwave Theory Tech., vol.
MTT-29, pp. 669-675, July 1981.

~, =cos(kxpli) 32= sin(kxpli)”cot( ~xpc)

~,= sin (kxPl,)/sin (EXPC) (A4)

with.r= lfori=2ands=2 for i=l.

APPENDIX 11 I

Defining HP= GP/AP and ~P = ~p/A~, one finds from

matching the tangential field componen~ at the Interfaces field of microwave integrated-circuit techniques in the millimeter-wave

of the cross section (Fig. 1) HP = — 1, Ep = 1 for the odd region.
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Hybrid Fin-Line Matching Structures

HADIA EL HENNAWY, STUDENT MEMBER, IEEE, AND KLAUS SCHUNEMANN, MEMBER, IEEE

Abstract —Two transitions between unilateral and bilateral fin-line

mounted back to back show unique features for impedance transformation.

The series reactance of the equivalent T-circuit are theoretically shown to

be capacitive. This is exploited by designing a broad-band switch with two

p-i-n diodes. Its isolation is about 20 dB throughout the Ku-band.

I. INTRODUCTION

T

HE BASIC building blocks of fin-line circuits are

various discontinuities in the slot width. Impedance

transformation is usually performed with either one or two

steps in the slot width [1]. With two cascaded steps one can

generate either a notch or a strip. Almost all known

components are realized in this way. These structures can

be analyzed by combining an eigenmode with a modal

analysis [2]. The procedure has been carried thrrough in [1].

We will apply this method here to new configurations.

The structures for impedance transformation to be de-

scribed show both electrical and practical advantages over

the known ones, Their slot patterns are sketched in Fig. 1.

These structures consist of two cascaded transitions be-

tween unilateral and bilateral fin-lines of equal slot widths.

The slot may be located either symmetrically or unsymmet-

rically with respect to the waveguide axis. A large range of

impedances can be generated by varying two geometrical

parameters: the common slot width 2,s and the length 21 of

the middle section. Such a line section can therefore be

used in either of two ways: as an impedance transfortner or

as a semiconductor device mount. In the latter application,

the circuit patterns show a practical advantage over con-

ventional ones. While the circuit at the front side which

contains the semiconductor devices is protected against

damage, one can conveniently alter the transforming sec-

Manuscript received March 10, 1982; revised June 4, 1982.
K. Schiinemann is with the Institut fur Hochfrequerrztechnik, Tech-

nische Universitat Braunschweig, D-3300 Braunschweig, West Germany.

H. El Hennawy is with Ain Shams University, Cairo, Egypt.

front side ‘////,
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slot

Fig. 1. Slot patterns of transitions between unilateral and bilateral
fin-tines.

tion on the back side of the substrate in order to optimize

performance. In addition, there are, however, even electri-

cal advantages over the usual notch and strip patterns,

which will be derived in the following.

II. MODAL ANALYSIS

In order to analyze the structures shown in Fig. 1, one

must know both the propagation constants and the field

distributions of the hybrid eigenmodes of unilateral and

bilateral fin-lines. The problem has been solved by a num-

ber of authors. We have adopted the spectral-domain

technique presented, e.g., in [3] and modified it to de-

termine the eigenmodes of both unilateral and bilateral

fin-line in a unified form. The unilateral fin-line case is

treated in Appendix I, while the results for the bilateral

fin-line will be presented elsewhere [4]. The notation is the

same for both cases. The key to an efficient eigenmode

evaluation is a suitable choice of the system of basis

functions into which the slot fields must be expanded. This

has been discussed in [3]. We have used a fifth-order

polynomial modified by a square-root term in order to take

the edge condition correctly into account. Thus it was

possible to calculate up to 30 eigenmodes with sufficient

accuracy.

The modal analysis for computing the characteristics of

an abrupt transition between a bilateral and a unilateral

fin-line shall be briefly described (compare also to [5]). As
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