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Efficient Figenmode Analysis for Planar
Transmission Lines
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Abstract — A unified analysis for planar transmission lines is performed

using the mode-matching technique. Exploiting the fact that the thickness

of the metal coating (fins or strips) is usually very small in comparison to

all other dimensions, the characteristic equations are formulated in'a way’

which preserves the physical meaning of their individual terms. Thus,
simplifications of far-reaching consequences can be introduced for all
eigenmodes showing a cutoff frequency. It is shown in particular that the

higher order modes can be derived approximately from the fundamental -

mode. Moreover, the dispersion relation of fin-lines can be given by a
simple expression because the equivalent dielectric constant linearly de-
pends on frequency. Both steps reduce the computer time by about two
orders of magnitude in comparison to the spectral-domain method.

I. - INTRODUCTION

UMEROUS PAPERS have appeared dealing with a
rigorous solution of the dispersion problem of various
planar transmission lines. Highly sophisticated techniques
“have been developed and applied, one of the most favor-
able being the spectral-domain method in conjunction with
Ritz—Galerkin’s method. Two references may stand for
many investigations: [1], [2]. Common to all of these works
is a time-consuming evaluation of the final relations. Hence,
there are but few papers dealing with an application of the
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eigenmode analysis to circuit problems. This contribution
deals with an approximate and efficient analysis of planar
transmission lines and its application to fin-lines. Usmg the
mode-matching technique, the final equations are for-
mulated in a way which allows introducing some essential
s1mp11flcatlons The main difference to existing methods is
a reduction in computer time of about two orders of
magnitude. Hence, the analysis should be well suited for a
computer-aided design of microwave planar circuifs.

II. ANALYSIS

The structure which has been analyzed consists of an
arbitrary number of metallic strips which are deposited on
either side of a dielectric substrate. This planar circuit may
be mounted either in the H-plane or in the E-plane of a
rectangular box. Hence, the structure can be specialized to
represent a microstrip line, coupled striplines, a slot line, a
coplanar line, a microstrip line with tuning septums, a
bilateral, unilateral, or antipodal fin-line, and a multislot
fin-line. For explaining the calculation procedure, the cross
section of the latter is shown in Fig. 1. The metallic strips
are assumed to have finite thickness. This eliminates, on
one hand, the existence of field singularities due to an edge
condition while it is furthermore realistic at frequencies in
the upper millimeter-wave range [3]. '

The - eigenmode analysis starts with the well-known
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Fig. 1. Cross section of a general planar transmission line.

mode-matching method, which shows some important ad-
vantages over other methods: its final equations can be
interpreted physically. This allows simplifications of great
consequences as will be shown below. Moreover, the method
can also directly be applied at the cutoff frequency. An
inherent disadvantage is, however, the poor convergence of
the solutions. It was the main task of our investigations to
remove this restriction.

The cross section of the shielded planar structure of Fig.
1 is divided into 7 regions with 8 boundaries separating
these regions from one another. Due to the dielectric
substrate, the field is hybrid and can be calculated from 2
scalar potential functions. In region 1 one has, e.g..

[e o]
= ZOAp-cos(kxpx)-cos(kypy)-exp(— Jk,z)
fom

e —
= 3 A,sin(k,,x
r=1

In the following we will still need the potentials in region 7.
They are of course similar to (1) but with amplitudes 4,
A replaced by G, G The wavenumbers in the x- and
y- dlrectlons are related via

— K2+ k2 =K?

cmn

— k24 e,k =k

cmn

)-sin(k,,y)-exp(— Jk,z). (1)

=kl,+k;,
=kl +k;,. (2)
Furthermore, k,, = pm/b, and k means free-space wave-
numbers. The second of the separation relations is valid in
region 4.

The total field is calculated by a superposition of a
TE-term (¢*) with a TM-term (¢¥). One obtains, e.g., in
region 1

o0 A i
E,= Y 7]’+?"-(1—ep)}-sin(kxpx)-cos(kypy)
p=0] P p
where
k2 = k2 @
Y =— —<&r = — ZR — and 220 (3
’ Jw'U‘kap ? Jkypkzn%) o €0 ( )

with e, =1 for p = 0, and €, = 0 otherwise. The next step is
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to match the tangential field components at the various
interfaces. Thus, the y-dependence is eliminated due to
orthogonality. We will now utilize that the metallization is
usually very thin in comparison to all other dimensions.
For Ac/a <1 we can set sin(k,Ac) = k, Ac and cos(k, Ac)
=1. It is then possible to eliminate the amplitudes of the
fields in the slot regions and in the dielectric region which
can be explicitly related to the amplitudes of the fields in
regions 1 and 7. This is valid for any number of slots or for
any number of strips on a dielectric substrate. (The struc-
ture of Fig. 1 may also be interpreted as a general strip-line
configuration being mounted in the H-plane of the rectan-
gular waveguide.) Thus, one finally arrives at the homoge-
neous system of equations
o0 00
f()=2X X" F(.p), gl)= ¥ XP-F(1,p),
p=0 p=0
t=0,1--- 00, HE-modes
0
X0-Fi(t,p), g(1)= ¥ XP-F(1.p),
p=1

t=1,2--- 00, EH-modes (4)
where X, X, X, X@, f(1), g(1), (1), and (1) are
linear combinations of the amplitudes in regions 1 and 7.
Furthermore, they depend on &, ,, k,,, k£, and dimensions.
They are listed in Appendix I. The abbreviations £y, F,, F,,
and F, depend only on dimensions and not on frequency.
They are given by

Fi(p) =X 5 1 (60) () o= %

[e o]

f=Yx

p=1

o]
2 Fs:
1 s=0 J s=0 7

J

FA6p) =8 B St i) =L L F

J J

where i denotes the slot number on the left of the substrate
and j denotes it on the right. f, depends on two integers as

2
Lpvp) =20

(=1)-sin(p,7(b,+d,)/b)—sin(p,7b,/b)

—(p2/p?)(b%/a?) ’
for p,d, = p,b
d 2d
= 5 cos(pymb,/d,), 1,(0,0) = =+
forp,d, = pyb. (6)

Equation (4) can be explained physically.

1) The first two relations describe the transverse reso-
nance condition of a hybrid HE-mode, the latter two
belong to an EH-mode. Setting ¢, =1 yields E{) = E{) =
H{) = H{) = 0 (see Appendix I). Then 4) descnbes purely
H—modes (TE modes) and E-modes (TM-modes), respec-
tively.

2) Matrices F(t, p), F,(t, p), F,(t, p), and F,(t, p) are
purely diagonal if the metallization is removed. Hence,
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Fig. 2. Guide wavelength versus frequency of a microstrip with tuning
septum of width dy. @ =24.13 mm, b=12.7 mm, /=17, =11.43 mm,
dy=d,=5.715 mm, ¢ =127 mm, ¢, = 8.875. X means free-space wave-
length; 0 means results taken from {5]. Parameter is the number of
terms in the series expansions.

there is no mutual coupling between the expansion terms
of the individual regions, which can be treated separately.
The transverse resonance condition of the HE, ,-modes is
then obtained from the first two equations of (4) setting
t =0, that of the EH,,;-modes from the second couple for
t =1, etc. The HE- and EH-modes change into the H- and
E-modes of rectangular waveguides for e, = 1.

3) The structure of the matrices (5) suggests how the
general case of more than two slots on either side of the
substrate is to be treated. Then the maximum summation
indices for i and j have only to be raised.

The third item constitutes an essential difference to the
spectral-domain method. In this method the electromag-
netic field is expressed in terms of the unknown slot field
components. Hence, raising the number of slots increases
the number of unknowns. In our method, the complexity
of the evaluation procedure is, however, not affected by the
number of slots.

Numerically investigating the convergence of the series
in (5) has shown that F,, = f,(¢, s)f,( p, s)b/d, monotoni-
cally increases up to a maximum value which is achieved at
s being the nearest integer to a certain s,,. The latter has
been found from (5) by differentiation. It reads

sw=[(p*+1%)/2]"d,/b. (7)

For s>, F, strongly decreases and can be neglected
when s exceeds s,, + As. As depends on the ratio of the slot
width to the waveguide height. This is analogous to the
phenomenon of relative convergence discussed in [4]. For
example, As =~ 0.5 for d,/b=0.3. The magnitude of As
must be found numerically for every d, /b.

The propagation constant is found by equating the de-
terminant of the homogeneous system (4) to zero. As an
example, numerical results for a microstrip with tuning
septum are compared with published values taken from [5]
(see Fig. 2). n, denotes the upper summation index in the
series expansion of the potential functions (1). The agree-
ment is excellent for larger widths of the septum, and it is
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Fig. 3. Guide wavelength of a shielded microstrip versus frequency
(solid lines). ¢ = b =12.7 mm, ¢ = 1.27 mm, d; = d; = 5.715 mm. Dashed
lines denote results taken from [6].

somewhat poorer for small widths, which is, however, due
to the truncation of the series used in [5].

The shielded microstrip treated in [6] is taken as a
second example. In this case, our solution converges very
fast and coincides with the results of [6] (see Fig. 3).
Comparisons to published results for fin-lines with one or
two slots also showed a good agreement. They will not be
given here because we will still compare our approximate
relations derived below to the literature.

III. APPROXIMATE RELATIONS AT CUTOFF

Up to now, the computer time is very large. Moreover,
one must be very careful in order not to overlook one or
the other zero of the determinant. Both restrictions can be
removed for all eigenmodes showing a cutoff frequency.
Hence, the following analysis does not cover the funda-
mental mode of a microstrip line or the even mode of a
double-slot fin-line. It is, however, valid for nearly all
higher order modes of the general planar transmission line
which do show a cutoff frequency. In particular, it is valid
for all modes of the bilateral, unilateral, and antipodal
fin-line. The first step is to replace the analysis by a
calculation at the cutoff frequency of every mode. Then
the HE-modes are reduced to pure TE-modes and the
EH-modes to pure TM-modes. Equations (4) are then
decoupled and can be solved separately. Equating their
determinants to zero yields the cutoff frequencies. The
propagation constants can be calculated from the cutoff
frequencies by utilizing the concept of an equivalent dielec-
tric constant k,, which has been introduced in [7]. Our
calculations have proven that the equivalent dielectric con-
stant is nearly constant versus frequency as has been
claimed [7] provided that the relative dielectric constant e,
of the substrate material is only small.

The substrate material, which is often used, is RT-duroid
with €,=2.22. In this case, £, may be assumed to be
constant. It can then be calculated from its definition as
the squared ratio of the cutoff wavenumber for ¢, =1 to
that obtained for the actual ¢,.
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Fig. 4 Equivalent dielectric constant versus frequency (solid lines). (a)
Bilateral, (b) unilateral fin-line. ¢ = 7.12 mm, b=a /2, ¢=0.125 mm,
Ac = 0.0175 mm, ¢, = 2.22. Dashed lines denote &, at cutoff.

The concept of an equivalent dielectric constant is
justified by this feature alone. Moreover, the numerical
calculations show that this quantity is of large practical
importance even for arbitrary permittivities, because it
depends on frequency linearly. This is illustrated in Fig.
4(a) and (b), which show the equivalent dielectric constant
of a unilateral and a bilateral fin-line with one slot. The
solid lines have been computed from the dispersion rela-
tion

k2=kk?—ki(e,=1) (8)

by inserting numerically found values for k,. It is obvious
that k, can be approximated at frequency f by

k(f)=k, (1) +g(e2—k2(f))(k—k). (9

g is a constant which can be determined either experimen-
tally or from the exact numerical solution at an arbitrary
frequency.

The linear frequency dependence of the equivalent di-
electric constant has recently been proven experimentally
[8] and modeled empirically [8]. In order to illustrate the
validity of (9), we have compared exact and approximate
propagation constants in Table I. The agreement is good
even at the upper band edge. The same statements are also
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Fig. 5 Equivalent dielectric constant of the HE35-mode versus frequency
(solid lines). Parameters as in Fig. 4; dashed lines denote &, at cuioff.

TABLE I
COMPARISON BETWEEN EXACT AND APPROXIMATE PROPAGATION
CONSTANTS OF FIN-LINES WITH ONE AND TWO SLOTS

bilateral fin-line unilateral fin-line
dz/b f/GHz 25 40 25 40
7 appr 0.520 0 884 0.519 0.890
0.0
K, x 0 522 0 890 0.523 0.896
2 appr 0.429 0.828 0.411 0.819
02
K, ex 0.430 0.831 0.413 0.823

WR-28 waveguide, €, =2.22,d,/b=0.1=b,/b, b, /b=06,1,=1,=
3.4155 mm, ¢ = 0.254 mm, Ac = 0.0175 mm.

valid for antipodal fin-lines. Furthermore, the straight-line
approximation to k,(f) may also be applied to higher
order modes. This is illustrated in Fig. 5 for the HE ;;-mode.
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Although the quality of the approximation is poorer now,
the influence on calculations should be small because these
modes are normally below cutoff, Hence, the weight of the
k -term in the dispersion relation is small.

Summarizing the results of this section we can state the
following. The eigenmode analysis may be performed at
cutoff and the dispersion relation thereafter approximated
by using the concept of an equivalent dielectric constant.
The computer time can thus be reduced by a factor of
1: N, with N being the number of interesting frequencies.
If the accuracy should be insufficient in a particular case,
one can utilize the approximate propagation constants as
initial values when looking for zeros in the coefficient
determinant of (4).

TV. RELATIONS BETWEEN FUNDAMENTAL AND
HigHER ORDER MODES

Up to now, the cutoff frequency of every wanted higher
order eigenmode must still be calculated. This can be
avoided by a second approximation which establishes a
relation between all higher order modes and the fundamen-
tal mode for those transmission lines whose fundamental
mode shows a cutoff frequency. Combining (4) with
(A2)-(A3) at cutoff yields

o0 o0
f()="Y xO-F(t,p), f(1)= Y XO-F(1,p).
p=0 =1
(10)
Furthermore
X0 = 4, (1Y + Hy )
Xisl)_:Ap(El(le)_Ep'EZ(;))
G _
H=-% E.=-L, (11)
P Ap P Ap

Abbreviations H and E have been defined in Appendix II.
Defining
(1+¢,)-Ac
o ¥
by 2 F, (. p)

1
p=OXz()

_ Ac

0 $ _

Z ——F/(1,p)
P=] Xt(l)
(10) can be rewritten

X0 =g, 1(0)/[(1+ ¢)Ac), XV=g7(1)/Ac.
(13)

These relations can be interpreted physically. For a single-
slot fin-line with d, =5 one finds from (5) and (6)
fi(py, pp)=1forp, = p,=t>1,F(p,t)=F(p,1)=0for
p=t, and F(0,0)=2. Hence, g, = g, = Ac for arbitrary ¢.
The fin-line is now reduced to a waveguide with dielectric
slab loading. Its eigenvalues are found from the zeros of
the coefficient determinants in (13). These relations are the
characteristic equations for the case of a fin-line d, <b,
too. The problem then is to determine both g, and g,. Their

&=
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TABLE II
COMPARISON BETWEEN EXACT AND APPROXIMATE CUTOFF WAVE
NUMBERS OF A BILATERAL FIN-LINE

m,n kc(exact) kc(approx)

1,0 0.252
1,1 0.879
3,0 0.998
5,1 2.041
1,3 2.658

1.002
2.039
2.646

RE-modes

1,1 1.279
2,1 1.923
1,2 1.986
3,1 2.044
3,2 2.545
5,1 2.907

1,925
) EH-modes
2 050
2 535
2.913

d; = 0.56 mm, b; =1.5 mm, other parameters as in Table L.

physical meaning can be derived from (12). (Note that this
is an inherent advantage of the mode-matching method!)
Now g,, g, = Ac because of the effect of the metal fins. As
is also known from ridged waveguides, the fins lower the
cutoff frequencies of the HE-modes but enhance those of
the EH-modes. Hence, g, must represent a capacitive and g,
an inductive effect.

In summary, g, and g, model the effect of the fringing
fields near the fin-line slots. It has been found from the
exact calculations that both quantities are nearly indepen-
dent of the order m of the modes. (This is also supported
by ridged waveguide calculations [9].) Moreover, one may
assume that g, and g, do not depend on indices ¢ or n,
respectively, because the perturbation due to the fins ap-
pears in the x-direction. This latter assumption can, how-
ever, only be expected to be valid for either n, ¢ even or n, ¢
odd. The validity of these approximations has been thor-
oughly checked numerically. Quantitative results will be
presented below.

Hence, go=~g,~g,~ -+, 88 =8~ ", =&~
g=--+,and g, = g, =~ ;= is valid. It is then possible
to calculate the eigenvalues of the higher order modes from
the eigenvalue of the lowest order mode. This will at first
be shown for the bilateral fin-line. Let us assume m odd.
The characteristic equation can then be derived from (11),
(13), (A2), and (A3) to read

cot(kxpl) =k, ,8, € ;]iﬁ— tan(Exp- c/2) =B. (14)
xp

Here ¢ has been changed in p. Furthermore, ¢ = 0 for p, n
even and ¢ =1 for p,n odd. (14) is used to determine g,
and g,, respectively, by inserting exactly calculated eigen-
values for the HE ;- and HE,,-mode, respectively. It can
afterwards be solved for the higher eigenvalues by setting
(k)= (m,m+ Aq) where m,=(m—1)/2. Then one
arrives at cot(A,)=B. This relation can iteratively be
solved together with (14). The whole procedure will be
explained in detail elsewhere [10]. It can also be applied to
the EH-modes and to unilateral fin-line. Its validity is
illustrated by a comparison to exact values, which is given
in Table II. Finally, the propagation constants of various
modes (H-type and E-type) calculated either exactly or
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TABLE 111
COMPARISON BETWEEN EXACT AND APPROXIMATE PROPAGATION
CONSTANTS OF A BILATERAL FIN-LINE AT 30 GHz

order kz(exact) kz(appr.l) kz(appr.Z)
type mn 1/mn 1/mm 1/mm
H 10 0.636 0.636 0.636
H 12 31.673 J1.673 J1.672
H 50 J1.772 j1.772 11.790
12 J1.881 J31.884 11.884
E 32 J2.479 J2.468 32.457
H 52 J2.550 j2.549 J2.514
H 70 j2.756 J2.753 12.728
£ 52 33.215 13.206 33.191
H 72 33.279 33.277 33.249

Parameters as in Table II. appr. | means with approximate dispersion
relation only, appr. 2 means with approximate calculation of the higher-
order modes additionally.

approximately are shown in Table ITI. Two approxima-
tions have been used: either a constant k, or a constant k,
together with the approximation to the higher order modes
just discussed. The accuracy obtained should be sufficient
for most applications.

Using the approximations to the higher order modes, the
computer time is reduced by a ratio 2: M with M the
number of wanted eigenmodes. The total reduction in
computer time is hence 2: NM, which is equivalent to a
reduction by about two orders of magnitude.

V. SIMPLIFICATIONS FOR OPEN STRUCTURES

It has been shown above that F,, in (5) can be neglected
for s >s,,. For narrow slots with d, < b, it is then suffi-
cient to take only the first term for s =0 or for s =1,
respectively, into account. Then

Fl,z(t,P)=F1/,2(’)'F1',2(P)- (15)
Similar relations are valid for FE(z, p), F,(¢, p), and
F,(t, p). In the following, we will only describe the analy-
sis for the first of relations (4). Taking the equation for
subscript ¢ =g, one can eliminate X{" by calculating the
difference

1O-Fla)= X XOFe)  (9)

P=q
with
Fi(t.q)

M=1(q)——=

F(q,9) (17)

and

F(t.q) F(q,p)
F(q,9) (18)

The right-hand side of (18) cancels because of (15). Hence,
inserting (A1) into (16) yields
At __kxq.Sin(kqul)'(l-‘_eq) Fl(t7q)

Aq B kxt.Sin(kxtll)'(l+€t) ' Fl(qa q) '

The expansion coefficients 4, have thus been related to 4 7
which is the only unknown in (19). They are now inserted

Fl'(t,p)=F1(t,p)—

(19)
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Fig. 6. (a) Cross section and (b) effective dielectric constant versus
frequency of an open slot-line (solid lines). //c=5, Ac=0.0175 mm,
€, = 2.22. 0 mean measurements; the dashed curves have been taken
from [12}].

TABLE IV
COMPARISON BETWEEN THIS THEORY AND [11] FOR € 4 = (k2 /k?)
OF A UNILATERAL FIN-LINE AT 33 GHz

d1 0.2 0.8 1.6 mm b1+d/2
1.129 | 1.152 | 1.165 this theory
0.1 1.3 | 118 | 1.1 Ref. 11
1.061 1.066 1.074 this theory
025 | 106 | 1.06 | 1.07 Ref. 11
mm

Slot width d, height b, + d /2, ¢ = 0.125 mm, other parameters as in
Table L.

into equation number ‘g’ of the system (4), which is the
characteristic equation for the HE-modes or EH-modes,
respectively.

This technique is well suited for open structures. It can,
however, also be used for a relatively small slot width. This
is confirmed by a comparison between our approximate
values for the propagation constant of the fundamental
mode of a unilateral fin-line and values derived in [11] by
using the spectral-domain method. The results given in
Table IV show a good agreement. (In fact, the effective
dielectric contant has been shown which is defined as the
squared ratio between the propagation constant and the
wavenumber.)

Finally, the effective dielectric constant of an open slot
line (Fig. 6(a)) computed in this way is compared to results
reported in [12] and to measurements in Fig. 6(b). The
agreement is again good.

VL

A unified analysis of general planar transmission lines
has been presented by using the mode-matching technique.
The number of unknowns does not depend on the number

CONCLUSIONS
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of slots or strips on the dielectric substrate if use is made of
the metallization thickness being very small in almost all
practical configurations. For all eigenmodes exhibiting a
cutoff frequency, two assumptions are shown to be valid.
The dispersion relations can easily be formulated by using
the concept of an equivalent dielectric constant. All higher
order modes can be derived from the fundamental mode.
In addition, further simplifications to the characteristic
equation are possible for small slot width and for open
structures. By all of these means, the computer time is
reduced by two orders of magnitude.

APPENDIX |
The various quantities appearing in (4) are
f(&)=4,-sin(k, )k -Ac-(1+¢,)
g(1) =G, sin(k,l,) -k, ,-Ac-(1+¢,)

S — k
f(t)=—;A!'Sm(kxfll)'kyt'kzn -Ac
8() = Gsin(kby) oy o-be (AD
Mo
. X;1)=AP.H‘(;)+GP.H2(L)+/§.E1(}11) G E(l)

R

RD=yg .HC HE i . E@_
X! *A”« H?+G, HD+ 4, E{Y— G, E{
YD =4 .g0 CH.OD 1 -EL_G.
XV=A4,HP+G,HY+A4,EY -G, E)
Y2 — g2 72 .5 =7
XP=A, H)+G, HY+ 4, EQ -G -EP (A2)

with ¢, =1 for t =0 and ¢, = 0 otherwise. Furthermore

H@®=F,+R, R, F, H)=R, R, F,
Ef)= (Lm'Rm'kP/k"l’)'E’2
E)= (L, Rk, /ky,) s
— =y _ 1
ng))_“—L ‘R, RP 92 Hz(p)=_—2'Lm'Rm'Rp'I§73
770 Mo
. k 1 v k -k
EO=22F 4 L2 R L+ I 22\ F
g, ks, Rk, p2
1 k €, k
Ep=|=I12R, =% +— 3 (A3)
%) Ky R”kp !
k K? 1
xXp emn e =
]—C—xp_ﬂRp Kclmn R’" (1 Rm) Lm
k p.kz Mo
k 12
‘ F "COS(kxp ,) F'p2=5in(kxpli).00t(k—xl’c),
Fy=sin(k,,l)/sin (Ex,,c) (A4)

withs=1fori=2and s=2 fori=1.

APPENDIX 11

Defining H, =G, /A, and E, =G, /A,, one finds from
matching the tangential field components at the interfaces
of the cross section (Fig. 1) H,=—1, E, =1 for the odd
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and H,=1, E,= —1 for the even modes of the bilateral
fin-line. For the unilateral fin-line, one has
- @ _-HP
; -
H{)~(3(p)/G,)  Hf)
_ —EQ -E®

E, = = —F (A5
A CrYVAR:

because Ac/a <1 and for the antipodal fin-line H, =
(=)?P*L E, = (- 7.
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Hybrid Fin-Line Matching Structures

HADIA EL HENNAWY, STUDENT MEMBER, IEEE, AND KLAUS SCHUNEMANN, MEMBER, IEEE

Abstract —Two transitions between unilateral and bilateral fin-line
mounted back to back show unique features for impedance transformation,
The series reactances of the equivalent T-circuit are theoretically shown to
be capacitive. This is exploited by designing a broad-band switch with two
p-i-n diodes. Its isolation is about 20 dB throughout the Kq-band.

I. INTRODUCTION

'HE BASIC building blocks of fin-line circuits are
various discontinuities in the slot width. Impedance
transformation is usually performed with either one or two
steps in the slot width [1]. With two cascaded steps one can
generate cither a notch or a strip. Almost all known
components are realized in this way. These structures can
be analyzed by combining an eigenmode with a modal
analysis [2]. The procedure has been carried through in [1].
We will apply this method here to new configurations.
The structures for impedance transformation to be de-
scribed show both electrical and practical advantages over
the known ones. Their slot patterns are sketched in Fig. 1.
These structures consist of two cascaded transitions be-
tween unilateral and bilateral fin-lines of equal slot widths.
The slot may be located either symmetrically or unsymmet-
rically with respect to the waveguide axis. A large range of
impedances can be generated by varying two geometrical
parameters: the common slot width 25 and the length 2/ of
the middle section. Such a line section can therefore be
used 1n either of two ways: as an impedance transformer or
as a semiconductor device mount. In the latter application,
the circuit patterns show a practical advantage over con-
ventional ones. While the circuit at the front side which
contains the semiconductor devices is protected against
damage, one can conveniently alter the transforming sec-
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Fig. 1. Slot patterns of transitions between unilateral and bilateral
fin-lines.
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tion on the back side of the substrate in order to optimize
performance. In addition, there are, however, even electri-
cal advantages over the usual notch and strip patterns,
which will be derived in the following.

II. MODAL ANALYSIS

In order to analyze the structures shown in Fig. 1, one
must know both the propagation constants and the field
distributions of the hybrid eigenmodes of unilateral and
bilateral fin-lines. The problem has been solved by-a num-
ber of authors. We have adopted the spectral-domain
technique presented, e.g., in [3] and modified it to de-
termine the eigenmodes of both unilateral and bilateral
fin-line in a unified form. The unilateral fin-line case is
treated in Appendix I, while the results for the bilateral
fin-line will be presented elsewhere [4]. The notation is the
same for both cases. The key to an efficient eigenmode
evaluation is a suitable choice of the system of basis
functions into which the slot fields must be expanded. This
has been discussed in [3]. We have used a fifth-order
polynomial modified by a square-root term in order to take
the edge condition correctly into account. Thus it was
possible to calculate up to 30 eigenmodes with sufficient
accuracy. :

The modal analysis for computing the characteristics of
an abrupt transition between a bilateral and a unilateral
fin-line shall be briefly described (compare also to [5]). As
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